Multimodal Classification of Breast Masses in Mammography and MRI Using Unimodal Feature Selection and Decision Fusion
نویسندگان
چکیده
In this work, a classifier combination approach for computer aided diagnosis (CADx) of breast mass lesions in mammography (MG) and magnetic resonance imaging (MRI) is investigated, using a database with 278 and 243 findings in MG resp. MRI including 98 multimodal (MM) lesion annotations. For each modality, feature selection was performed separately with linear Support Vector Machines (SVM). Using nonlinear SVMs, calibrated unimodal malignancy estimates were obtained and fused to a multimodal (MM) estimate by averaging. Evaluating the area under the receiver operating characteristic curve (AUC), feature selection raised AUC from 0.68, 0.69 and 0.72 for MG, MRI and MM to 0.76, 0.73 and 0.81 with a significant improvement for MM (P=0.018). Multimodal classification offered increased performance compared to MG and MRI (P=0.181 and P=0.087). In conclusion, unimodal feature selection significantly increased multimodal classification performance and can provide a useful tool for generating joint CADx scores in the multimodal setting.
منابع مشابه
Detection and Classification of Breast Cancer in Mammography Images Using Pattern Recognition Methods
Introduction: In this paper, a method is presented to classify the breast cancer masses according to new geometric features. Methods: After obtaining digital breast mammogram images from the digital database for screening mammography (DDSM), image preprocessing was performed. Then, by using image processing methods, an algorithm was developed for automatic extracting of masses from other norma...
متن کاملDetection and Classification of Breast Cancer in Mammography Images Using Pattern Recognition Methods
Introduction: In this paper, a method is presented to classify the breast cancer masses according to new geometric features. Methods: After obtaining digital breast mammogram images from the digital database for screening mammography (DDSM), image preprocessing was performed. Then, by using image processing methods, an algorithm was developed for automatic extracting of masses from other norma...
متن کاملH-BwoaSvm: A Hybrid Model for Classification and Feature Selection of Mammography Screening Behavior Data
Breast cancer is one of the most common cancer in the world. Early detection of cancers cause significantly reduce in morbidity rate and treatment costs. Mammography is a known effective diagnosis method of breast cancer. A way for mammography screening behavior identification is women's awareness evaluation for participating in mammography screening programs. Todays, intelligence systems could...
متن کاملDIAGNOSIS OF BREAST LESIONS USING THE LOCAL CHAN-VESE MODEL, HIERARCHICAL FUZZY PARTITIONING AND FUZZY DECISION TREE INDUCTION
Breast cancer is one of the leading causes of death among women. Mammography remains today the best technology to detect breast cancer, early and efficiently, to distinguish between benign and malignant diseases. Several techniques in image processing and analysis have been developed to address this problem. In this paper, we propose a new solution to the problem of computer aided detection and...
متن کاملEnsemble Classification and Extended Feature Selection for Credit Card Fraud Detection
Due to the rise of technology, the possibility of fraud in different areas such as banking has been increased. Credit card fraud is a crucial problem in banking and its danger is over increasing. This paper proposes an advanced data mining method, considering both feature selection and decision cost for accuracy enhancement of credit card fraud detection. After selecting the best and most effec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012